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I. INTRODUCTION 

Although many contributions have been made to estima

tion theory, the contribution which made the first great im

pact on engineering was made by Wiener (22). Kis research was 

concerned with the continuous estimation problem. That is, 

the measurement data is a continuous record. The development 

presented by Wiener, using Fourier analysis, arrives at the 

celebrated Wiener-Hopf equation which must be solved in order 

to obtain estimators. This approach to the estimation prob

lem includes the parameter, frequency, therefore, allowing 

the engineer to gain his all important "feel" for the esti

mators in terms of filtering theory. 

With the coming of state space and the digital computer 

the discrete estimation problem came to light. Inherent in 

any estimation problem is the determination of the expres

sion for the best estimator. The methods for defining the 

best estimator are many, leading to a number of assorted 

expressions. One criterion for a best estimator is least 

mean squared error. Such a criterion leads to a conditional 

expected value to describe the best estimatoi. Throughout 

the rest of this work the least mean squared error will be 

considered the criterion for the best estimator (21). There

fore, under this assumption the discrete estimator is char

acterized by the conditional expected value 
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x(k/i) = E[x(k)/yj^,y2, .../Yj^] 

where x(k) is the state vector at time t^ and i,y-|^/y2/• • •/Yj^] 

is the set of measurement vectors through time t^. The vec

tor x(k/i) is interpreted as the estimate of x at time t^ 

given the data up through and including t^. 

Estimation theory itself is divided into three parts 

depending on the relationship of k and i. When k = i the 

above expression represents the definition of the filtering 

algorithm. When k>i, the prediction algorithm is defined, 

and when k < i, the smoothing algorithm is defined. 

In order to expand the conditional expected value given 

above there has to be some given relationships between the 

state vectors and between the state vector and the observ

ables. These relationships are procured by modeling some 

physical system in which an interest lies. The modeling 

process consists of taking system parameters and fitting 

them into a specific format. Note that one may degrade or 

improve the modeling process by the manner in which the -

tem parameters are shaped into a given format. By cho , ng 

formats the modeling procedure is changed. 

There have been many methods used to write expressions 

for the above conditional expected value. One undesirable 

feature or mosr. of these expressions was "growlay mruioiy." 

In other words; all the data, y^ vectors, must be remembered; 
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and of course as i increased, more and more data accumulates 

for memorization. When all the data are processed simultan

eously, the processing is referred to as batch processing. 

Kalman arrived at a different scheme (10). He noticed that 

estimates of the state vector, x, were indeed functions of 

all the past data. So, Kalman devised a recursive equation, 

consisting of a previous estimated value of x plus a func

tion of the last data point or variable. This, of course, 

eliminated the growing memory problems. The recursive as

pect provided an extremely convenient procedure for digital 

computer implementation and is well suited to many on-line 

applications. 

The objective of this research is to explore recur

sive smoothirg algorithms for models involving a delayed 

state in the measurement equation. Every time the format 

for modeling a system is changed a new set of equations must 

be developed. For the standard modeling procedure, as has 

been mentioned previously, Kalman developed the recursive 

filtering equations. Also, for this model, much work has 

been carried out on smoothing equations. This paper de

velops the recursive smoothing equations for a relative new 

type of modeling scheme, which was presented by Brown and 

Hartmann (3). After development, these equations are used 

in an aided inertial navigation example. The importance of 

these equations, of course, depends entirely on the 
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importance of the delayed state modeling. 

Also in this paper is the extension of the work of 

Friedland (7) on the recursive filtering equations of Kalman 

to the smoothing algorithm. First of all, his decoupling 

ideas are extended to smoothing equations presented by 

Meditch (13). Next, they are extended to the recursive 

filtering equations derived by Brown and Hartmann for the 

delayed state model (3). Finally, his decoupling ideas are 

applied to the recursive delayed state smoothing equations 

developed earlier in this work. 

At this point, the Kalman filtering problem and solu

tion will be summarized (21). The system considered is com

posed of two parts. First, the process being estimated is 

assumed to be described by the state equation 

x(k+ 1) = x(k) + g% 

and the measurement data is related to the state by 

x(k)+ 

where [g^] and ] represent independent white-noise se

quences. All capital letters represent matrices and all 

small case letters represent vectors. The initial state 

x(0) has a mean value of x(0/-l) and is independent of 

[g^] and [ôy^]. The covariance of the estimation error at 

t = 0 is P(0/-1). The noise sequences are assumed to have 
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zero means and second-order statistics 

E[5y],5y'j] = Vkj E[g%ĝ ] = Q̂ ô̂ j 

E[6y^g'j] = 0 for all g,j 

where the prime indicates a transpose and Ô-, • is the Kronecker 

delta. An estimate x(k/k) of the state x(k) is to be com

puted from the data 72/• • • / Y;)^ so as to minimize the mean 

square error in the estimate. 

The solution of this recursive, linear, mean-square 

estimation problem can be determined from the orthogonality 

principle (15) as well as in many other ways, and is pre

sented below. 

x(kA-l) = 0̂  ĵ _ĵ x(k-lA-l) 

x(kA) = x(kA-l) + K ĈYj  ̂- ^_^x(k-lA-l) ) . 

The gain matrix, K^, minimizes 

E[ (x(k) - x(kA) )' (x(k) - x(kA) ) ] 

and is 

= P(kA-l)H^TH]^P(kA-l)H^'+ . 

The matrix P(kA-l) is the covariance of the error in the a 

priori estimate, x(k/k-l), and is 
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P(k/k-1) = E[(x(k) -x(k/k-l))(x(k) -x(k/k-l))'] 

The matrix P(k/k) is the covariance of the error in the a 

posteriori estimate, x(k/k), and is 

P(k/k) = E[ (x(k) - x(k/k) ) (x(k) - x(kA) )'] 

- [l-K^H^]P(k/k-l) . 

It is evident that the gains, and the covariance matrices, 

P (k/k-1) and P (k/){) , could be computed for all possible k 

without computing any of the state estimators. In this man

ner the quality of the modeling process could be observed 

by comparing the covariance matrices of the estimation er

rors with the covariance matrices of the true error. The 

order in which the above equations are used is: 

1) compute the optimum gain matrix 

2) revise the a priori estimate to get the a posteriori 

estimate x(k/k) 

3) compute the a posteriori error covariance matrix 

P(kA) 

4) extrapolate ahead the a posteriori estimate and 

covariance to get x(k+l/k) and P(k+l/k). 

In many filtering problems the original state assign

ment is supplemented with additional states due to modeling 

problems. One such problem is a system of difference 
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equations with other than a white noise driving function. 

For example, the drift of a gyro in inertial navigation sys

tems is usually modeled as a Markov process. 

Some systems are modeled such that there are bias states 

appearing in the difference equation. Friedland (7) has of

fered an approach to estimate the states of a system by a 

linear combination of the bias estimate and the bias-free 

estimate of the states, which can be computed separately. 

His technique reduces the size of the system and the compu

tation difficulties due to system size. He also points out 

that his decoupling in the calculation has its optimal ef

fect when the size of the bias-free state vector is equal 

to the size of the bias vector. It seems that whatever makes 

his method advantageous for recursive filtering would also 

make it desirable for recursive smoothing. In Chapter III 

the recursive smoothing algorithm presented in Meditch (13) 

is decoupled by extending the work of Friedland. It should 

be pointed out that even though smoothing is an off-line 

operation, i.e., done after the fact, there could be 

reason to model a system with biases just to take advantage 

of the decoupled smoothing equations. The trade-off between 

the computing costs and the degraded models has to be evalu

ated for each situation. 

Brown and Hartmann have suggested a delayed sLaLe model 

to be used for certain aided inertial navigation systems (3). 
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In such systems position and velocity errors are the states 

to be estimated and the difference between inertial and non-

inertial velocities is the observable. If the measurement 

noise is white, the variance of the measurement noise is 

infinite which does not fit the Kalman filter assumptions. 

If the samples of observable are replaced with average sam

ples, where the average is over some small time At, the dif

ficulty is eliminated. This average precipitates the delayed 

state in the measurement equations. In the article cited the 

recursive filtering equations for the delayed state model are 

derived. Chapter IV of this presentation uses the delayed 

state model and derives the recursive smoothing equations. 

The algorithm developed is an off-line computation scheme 

inverting only a matrix of the order of the measurement vec

tor. But, the measurements must be remembered to carry out 

the scheme. The situations calling • or delayed state model

ing occurs often enough for important physical systems to 

justify extending Friedland's decoupling idea. In inertial 

systems especially, there are a good number of the states in 

the state assignment which could be modeled as biases. Chap

ter V presents the decoupled solution of the recursive fil

tering equations and recursive smoothing equations for the 

delayed state model. 

All Uie mentioned developments nave Deen ror recursive 

equations and for good reason. The recursive equations are 
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readily implemented on computers, the memory requirements 

are not as demanding as they are in other methods, and the 

size of the actual computation can be held down so they in

volve only system size matrices. Periodically, one must go 

back and make the comparison between the recursive solution 

and tl>e batch processing schemes. In Chapter VI two batch 

processing schemes are explored. The system size is chosen 

to be consistent with the example to follow in Chapter VII. 

The example in Chapter VU is a system presented by 

Brown (2). The coefficient matrices of the state and de

layed state vectors in the measurement equation contain a 

number of terms which were assigned as states, making the 

system nonlinear. Because of the nonlinear aspects of this 

system, the Kalman filter alone will not produce desirable 

results. Reviewing the techniques available for solving 

nonlinear equations it was found that in some cases itera

tion schemes are relied upon for solutions. With this in 

mind an iteration scheme involving filtering and smoothing 

will be worked out for this system. The first thing that 

must be done is that the system is linearized about a nominal 

value. Then the Kalman filter is used as usual. "The lin

earized model is then corrected by the smoothed information 

and the Kalman filter is rerun. Because of the short bursts 

of data obtained in this pvsmpl p t-.hp snnonhhi ng rnmpnta-

tion should be easily implemented. The data for this 
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example was obtained from actual test flights, and the air

craft position was determined by precision radar or accurately 

known check points. Therefore, the system errors, those 

trying to be estimated, were known. These facts made the 

above system into an ideal example for testing the smooth

ing algorithm. 
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II. SMOOTHING 

The main emphasis in this paper is smoothing. This 

chapter will try to establish a common starting place. As 

was mentioned earlier, the definition for smoothing is 

x(k/i) = E[x(k)/y^,y2, ... ,yj^] 

where i > k. This definition implies that giveiji the data 

through the present, the estimate of some state vector in 

the past is being updated. Using this idea, every estimate 

from the present time to some fixed or arbitrary one in the 

past can be updated with each new data point. To become a 

little more specific, three different types of smoothing are 

defined. They are: 

1) fixed-interval smoothing 

2) fixed-point smoothing 

3) fixed-lag smoothing. 

The fixed point algorithm is characterized by the smoothed 

estimate, 

x(k/j), j= k+l,k+2,... k = fixed integer. 

This is to say that the estimate at some fixed time point, 

k, is updated with each new piece of data. The fixed-lag 

algorithm is characterized by the smoothed estimate, 

x(k/''k-rN/, k-C,l,... U- fxAea positive integer. 

This is to say that the estimate at some fixed interval from 
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the last data point is updated with each new piece of data. 

The fixed interval algorithm is characterized by the smoothed 

estimate, &(k/N), k = 0,1,...,N-1, N = fixed positive integer. 

Which says that all the past estimates are updated with each 

new piece of data. 

The main difference in the three smoothing algorithms is 

the manner in which the data after the time point, k, is 

used. Therefore, all one has to do is permute the develop

mental philosophy of one type of smoothing to precipitate 

another type of smoothing. With this in mind, the emphasis 

from here on will be placed on the fixed interval algorithm. 

There are different mathematical schemes for the fixed 

interval smoothing problems. A standard scheme is presented 

by Meditph (13). He says that 

&(k/n) = E[x(n)/y^,y2,...yn_i,y(n/n-l)] 

where 

y(n/n-l) = "9(n/n-l) 

and 

9(n/n-l) = E[y^/yi,y2,...,yn_i] 

Since it is assumed that the random variables are Gaussian, 

the above is the same as the general definition. With 

E[x(k)] = 0 then 
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&(k/n) = E[x(k)/y^,y2,...,y^_^] + E[x(k)/yin/n-l)] 

= it(k/n-l)+E[x(k)y(n/n-l)']E[y (n/n-l)y'(r/n-1) ]~^ 

y(n/n-l) . 

Starting with k = n-1 and evaluating the above expression 

Meditch obtains the one step back smoothing equation. Con

tinuing on with k = n-2,n-3,... and with the use of induc

tion he obtains the general fixed interval smoothing equa

tions . 

&(k/N) = 5t{k/k) + A(k) [&(k+l/N) - ̂(k+l/k) ] 

A(k) = P(kA)(D' (k+l,k)P"^(k+lA) 

P(k/N) = P(k/k) + A(k) [P(k+1/N) - P(k+lA) ]A' (k) . 

This is a recursive solution to the fixed interval smoothing 

problem. The main disadvantage computationally to this scheme 

is that the a priori covariance matrix has to be inverted. 

It should also be noted, however, that the covariance matrix 

for the smoothed estimate is not needed to compute the smoothed 

estimate. This fact is true for most smoothing schemes. 

Another scheme used in the fixed interval smoothing prob

lem is presented by Cox (5). He starts by minimizing a cost 

function. In doing this. Cox ends up with a two point bound

ary value problem to solve. From this TPBVP he obtains the 

Kdliiidii filtering equations plus cne rixed interval smoothing 

equations. 
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&(k/N) = A(kA) +P(kA)ffi' (k+lyk)X(k) 

X(k-l) = m' (k+l,k)X(k)+M' (k)R"^(k) [y(k)-M(k)ii(k/N)] 

X(N) = 0 

This is also a recursive solution to the fixed interval 

smoothing problem. In this scheme a matrix inverse opera

tion is also required. But, the dimension of the matrix 

being inverted here is a m x m matrix where m is the size of 

the measurement vector. In many estimation problems the 

size of the measurement vector is less than that of the 

state vector due to the number of augment states. There

fore, inverting the R matrix is more desirable than inverting 

the P(k+l/k) matrix. The trade-off here is that now the 

measurements must be remembered. 

Another scheme is presented by Rauch (19). The dif

ferences between this scheme and the one above are many. 

Rauch's equations have a growing sumation. His equations 

are best used when finding the estimates at one time point; 

and they propagate in the forward direction. 

n 
it(k/N) = ii(kA) + Z K(k,i) [y(i)-M(i)ii(i/i-l) ] 

i=k+l 

i-1 
K(k,i) = [P(kA){D' (i,k) - S K(k,j)M(j)P(j/j-l)D)'(i,j)} 

j=k+l 

. M'(i)[M(i)P(i/i-l)M(i)+R(N)]"^ 

i = k+l,k+2,...,N . • ^ 
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It is true that the K(k,i) is computed recursively. But, 

the sumations make the computations in arriving at the 

smoothed estimates grow with the number of steps taken in 

the past. 

These are just three schemes that have been arrived at 

for the fixed interval smoothing problem. They all have some 

common features. The computations in two of the above schemes 

are done such that the smoothed estimates are obtained by 

going from the last data point backwards in time to an 

earlier data point. This feature is almost expected, but 

some of the outcomes of it causes some problems. For ex

ample, in each method the filtering covariance matrices must 

be incorporated in the backwards computations. This implies 

either a backwards recursive equation is needed cr that the 

covariance matrices must be memorized. In large systems the 

memorization would be near impossible. The backwards re

cursive equation for the covariance equations requires an 

inverse of the transition matrix, which is something that 

should be avoided. 

It seems that at the present time we have a choice of 

schemes for the fixed interval smoothing problem. The only 

difficulty that can be seen is implementing these schemes. 

These problems could often be attacked individually and 

ovfciiuolue (3) . 
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III. A SMOOTHING ALGORITHM USING 

FRIEDLAND'S DECOUPLING SCHEME 

As has been mentioned previously^ smoothing should be 

considered an off-line computation. Usually it will be car

ried out after the physical operation or experiment has been 

completed. This allows a researcher to use devices with much 

more accurate computations and does not have to worry about 

storage space and time. Therefore, there would be no justi

fication in modeling Markov states as biases just to be able 

to use a decoupled smoothing scheme. But, if the true model 

of a system contains bias states the decoupling scheme should 

present a little savings in computation. 

In this chapter a decoupling of a smoothing scheme al

ready in existence will be presented. The equations that will 

be decoupled are presented by Meditch (13). But first 

Friedland's paper will be outlined. Then using the same 

technique the smoothing equations will be derived. 

A. Treatment of Bias Variables 

The problem of estimating the state x of a linear system 

in the presence of a constant but unknown bias vector b or 

of a Markov state with a very long time constant, which will 

appear like a constant during the time the filter is being 

useQ, is considered, j-niis bxcics Lauc j-iijujLUciiCcS the dynzmz,cz 

and/or the observations. It was shown by Friedland (7) that 
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the optimum estimate k of the state can be expressed as 

ic = X + V^Ê 

where x is the bias-free estimate, computed as if no bias 

were present, Ê is the optimum estimate of the bias, and 

is a matrix which can be interpreted in the scalar case as 

the ratio of the covariance of x and Ê to the variance of b. 

The computation of the optimum estimate x is effectively de

coupled from the estimate of the bias b, except for the final 

addition. 

Friedland's notation is as follows: 

til 
x(k) - original or physical process state (at k 

. observation instant) n components 

b(k) - bias vector (r components) 

- process noise vector, with E[gj^gJ^] = 0^6^^ 

ôy^ - observation noise vector, with E[6y^ôy'j^] = . 

Assuming that g^ and 6y^ are independent for all k and n the 

dynamic equations can be written. 

x(k) = A^_^x(k-1) +B^_^b(k-1) + gg^_^ 

b(k+l) = b(k) 

y(k) = H^x(k) + C^b(k) + 6y^ (measurement equation). 

Most people wnen attacKing a problem ot this sort augment the 

state vector to include the bias terms as states. Then using 

I 
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the new dynamical equations proceed with the Kalman filter 

equations. So, a vector Z(k) will be defined as 

Z(k) = 

x(k) 

b(k): 

Now the dynamical equations may be rewritten as 

Z(k) = F^_j^Z(k-l) +G 

y (k) = L^Z(k) + 6y^ 

where 

\-l 1 \-l 
"l 

= 

1 
, G = -

0 1 I 0 

= [Hk 1 

The Kalman filter equations can be written for the augmented 

dynamical equations 

Z(kA) = F^_^Z(k-lA-l) + K(k) [y(k) - L^F^_^Z(k-lA-D ] 

where 

K(k) = P(kA-l)Î '[l̂ P(k/k-l)L^'+ R^] -1 

= P(kA)L'R^~^ 

P(kA) = [I-K(k)L^]P(kA-l) 

P(k+lA) = F^P(kA)F^ + GQ, G' (1) 
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Friedland (7) now defines P(Vk-l) as the covariance which is a 

solution to Equation 1 for the initial conditions 

P{0/-1) = 

P^(0/_1) I 0 

I 0 

He then shows that the solution to Equation 1 can be written 

as 

P(kA-l) = P(kA-l) +U(k)M(k)U' (k) 

where M(k) is an r x r symmetric matrix and U(k) is an n x r 

matrix, and 

U(k+1) = Fj^[I-P(k/k-l)I^(I^P(kA-l)L^+R^)"^Lj^]U(k) 

= F^V(k) 

M(k+1) = M(k) -M(k)U' (k)L^[y (kA-l)L^-PR^ 

+ L^U(k)M(k)U' (k)L^]'"^ L^U(k)M(k) 

The last term of the solution for Equation 1 is due to the 

fact that the cross term P^^ and the lower diagonal term P.j^ 

of the partitioned P(0/_i) matrix are not zero, i.e., 

Pj^(0/1) 4 0 

The above equation leads to the following 
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P(k/k) = P(kA) + V(k)M(k+l)v' (k) 

V(k) = [I - K(k)L^]U(k) 

By writing the component equation for the bias and the state 

forms, it can be shown that from the above set of matrix equa

tions 

Uj^(k) = Vj^(k) = U^(0) = constant 

This fact and the assumption of x and b being independent at 

k = 0 leads Friedland to choose 

U^(0) = I and U^(0) = 0 

which precipitates the following equations 

V^(k) = U^(k) -K^(k)[H^U^(k) + C^] = U^(k) -K^(k)S(k) 

U^(k+1) = A^V^(k) + 

P (̂kA-l) = P (̂k/k-l) + U (̂k)M(k)U'̂ (k) 

= U^(k)M(k) 

P (̂kA-l) = M(k) 

P (̂kA) = P (̂kA) + V (̂k)M(k+l)v̂ (k) 

Pxb(kA) = V^(k)M(k+l) 

p̂ (jcA) = MU+IJ 
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M(k+1) = M(k) -M(k)S' (k) [H^P(k/k-l)Hj^+R^+S(k)M(k)S' (k) 

. S(k)M(k) 

k^(k) = K^(k) + V^(k)Kj^(k) • 

K^(k) = M(k+1) [V̂ (k)Ĥ + Ĉ ] . 

Using these equations and splitting the augmented filter equa

tions into components, Friedland arrives at the following de

coupled equations 

b(kA) = b(k-lA-l) + K̂ [Y3̂ -S(k)b(k-lA-l) ] 

x(kA) = Aĵ _ĵ x(k-lA-l) + K̂ (k)Ŷ  

~ y(k) - H^A^_]^x(k-lA-l) 

which can be arranged to prove the following expression 

x(kA) = x(kA) + V (̂k)b(kA) 

Although these results have been derived from an assumption 

of constant bias, they can be readily extended to the de

terministic process, i.e., 

= Vn 

which can also be written as 

where 
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w* ^ 
n+1 = n w. 

i=0 ^ 

and W. is the transition matrix which transforms b. to b. , , . 
1 1 1+1 

Therefore, is the transition matrix which transforms 

b^ to b^^^. Inherent in the deterministic process problem is 

that the dynamics of the bias are known, but not the initial 

conditions. Therefore, with the above observation the time-

varying bias problem can be reduced to the constant bias 

problem by redefining the sum of the coefficients as indi

cated below. 

x(k) = Ak_iX(k-l) + + Sk-1 

b^(k+l) = b^(k) 

y(k) = + 6y% 

Therefore, if in all the previous equations the coefficients 

and are changed to read and the results will 

be identical. 

B. Smoothing Algorithm 

The idea of decoupling the estimation equations will now 

be extended to the smoothing equations. By the use of induc

tion, the smoothing equations presented by Meditch (13) will 

be decoupled. The one step back smoothing equations will -be 

decoupled first. 
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Z(kA+l) = Z(k/k) +D(k) [Z(k+l/k+l) -F,Z(kA)] 

D(k) = P(k/k)F̂ 'P (̂k+lA) 

where 

Z (k/k) = 

x(kA) 

b(kA)_ 

In order to decouple the above equations the smoothing gain 

matrix, D(k), must be partitioned into components. 

D(k) = I 

Pjj(kA) I \l 0-

®kl^! 

Rll I R^2 

^21 ' ^22 

where are the partitions of the matrix P ^(k+lA) which 

are 

^11 = -P^^(k+lA)P^~^(k+lA)P^'^(k+lA) 

^22 " - Pxb(^+^^)^x"^ (k+lA)P^]^(k+lA) 

-1 
^12 = -V (k4-lA)P^^(k+lA)R22 

Rgi = (k4-1 A) P^' (k+1 A) R^^ 



www.manaraa.com

24 

Using the equations Friedland presents for the a priori co-

variance matrices the above equations can be rewritten. 

R'} = P^(k+l/k) + U_(k+l)M(k+l)U '(k+1) - (k+l)M(k+l) 
J. J. X X X X 

• M"^(k+l)M(k+l)U^'(k+l) = P^(k+lA) 

R23_ = -M~^(k+l)M(k+l)U^'(k+l)P^~^(k+l/k) 

= -U^'(k+l)P^"^(k+lA) 

Since P~^(k+l/k) is a symmetric matrix 

Ri2 = 1^21 == (k+lA)U^(k+l) 

Using the matrix inverse identity (20) reduces as follows 

^22 Pi3~^(k+l/k) -Pj^"^(k+l/k)P^^'(k+lA) [-Pj^(k+lA) 

+ P^^(k+lA)P^~^(k+lA)Pj^^(k+lA)]"^P 3̂̂ (k+lA) 

. P^"^(k+lA) 

= M"^(k+l)M~^(k+l) + U^(k+l)P^(k+lA)U^(k+l) 

Now the components for the gain matrix are 

D^(k) = [^k^ll ^21^ 

= P^(kA)Aj^Pj^"^(k+lA) 5 D^(k) 
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Dbx'k) = + Pb'kA) + R21] 

- 0 

Db'kl = :'xb'k/kl%2 + [V12 + ''22] 

= I 

°xb(W = F^'kA)A;,Ri2 + P^;,(kA) [%2 + R22] 

= V^(k) - D^(k)u^(k+1) 

With the gain equation partitioned as above, the augmented 

smoothed equations can be separated into the following 

x(kA+l) = x(kA) + D^(k) [x(k+lA+l) - A|^x(kA) - B^b(kA) ] 

+ D^^(k)[b(k+lA+l)-b(kA)] 

and 

b(kA+l) = b(kA) + D^^(k) [x(k+lA+l) - \x(kA) - B^Ê(kA) ] 

+ D^(k) [b(k+lA+l) - b(kA) ] 

Using the result 

x{kA) = x(kA) + V̂ (k) b(kA) 

and the derived expression for the gain components, the above 

equation reduces to 

x(kA+l) = x(kA) + D^(k) [x(k+lA+l) - A|^x.(kA) ] 
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+ [V^(k) -V^(k) +D^(k)u (k+1) -D^(k)u^{k+1) ]b(k/k) 
A ^ X. A XX 

+ [D^(k)v^(k+1) +v^(k) -D^(k)u^(k+l) ]b(kflA+l) 
X X X XX 

= x(A+l)+[D^(k)V^(k+l)+V^(k)-D^(k)U^(k+l) ]b(k+lA+l) 
X X  X X X  

b(kA+l) = b(kA) + b(k+lA+l) - b(kA) = b(k+lA+l) 

Therefore, the decoupled one step back smoothing equations are 

x(kA+l) = x(kA+l) + T(kA+l)b(kA+l) 

T(kA+l) = D^(k)V^(k+l) + V^(k) -D^(k)U (k+1) . 
XX X XX 

Now proceeding with the two step back smoothing equations 

and the same gain components, the components of the augmented 

equation are 

x(kA+2) = x(kA) + D^(k) [x(k+lA+2) -A^x(kA) - B^b(kA) ] 

+ D^j^(k)-[b(k+lA+2) -b(kA) ] 

and 

b(kA+2) = b(kA) + Dj^^[x(k+lA+2) - A^x(kA) -B^b(kA)] 

+ Dj^[b(k+lA+2) -b(kA)J 

By using the equation derived for the one step back 

smoothing problem, the two step equations can be reduced in 

a similar manner as those in the one step situation. 

x(kA+2) = x(kA) + D^(k) [x(k+lA+2) - A^x(kA) ] 
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+ [V^(k) -D, (k)U (k+1) - V^(k) + D^(k)u^(k+1) ]b(kA) 
X K A X XX 

+ [D^(k)T(k+l/k+2) + V^(k) -D^(k)U (k+1) ]b(k+l/k+2) 

= x(kA+2) + [D^(k)T(k+l/k+2) + V^(k) - (k)U^(k+1) ] 

• b ( k+ l/k+ 2 ) 

b(kA+2) = b(kA) + b(k+lA+2) - b(k ) = b(k+lA+2) . 

Therefore, the decoupled two step l . : smoothing equations are 

x(kA+2) = x(kA+2) + T(kA+2)b(kA+2) 

T(kA+2) = D^(k)T(k+lA+2) + V^(k) - D^(k)U^(k+l) . 

Proceeding in the same manner, the N - k^^ step smoothing 

equations or the fixed interval smoothing equations are found. 

In carrying out the same manipulations as was indicated in 

deriving the one and two-step equations one arrives at the 

following 

x(k/N) = x{k/N) + T (k/N)b(k/N) 

T(k/N) = D^(k)T(k+l/N) + V^(k) -D^(k)U^(k+l) 

The above equation represents a recursive technique to 

handle the fixed interval smoothing problem when there are 

bias states in the system model. It should be noted that 

since 

b(N/N) = b(N-l/N) = ... = b(k/N) 
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that T(k/N) and x(k/N) are the only matrices which have to 

be recalculated for each step. The flow chart in Figure 1 

indicates the calculation of the smoothed estimates of the 

state variables. 

One has the usual memory problem with the regular 

smoother plus he has to remember the extra matrices V^(k) 

and U^(k+1) from,the filtering procedure to form the cor

rect smoothed estimate. The saving comes from having to 

invert a smaller matrix to form D^(k), t,he usual gain matrix. 
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Start 

b(N/N) 

Store Filtered 

U (k) Results 

P (k/k) 

P (k+l/k) 

Compute 

D (k) T(k/N) 

Compute 

^(k/N) 
Delay 

Smoother i 
For Nonbias ' 

States J 
I 

Figure 1. Flow chart for decoupled smoothing equations 
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IV. SMOOTHING EQUATIONS FOR DELAYED STATE MODEL 

There are physical situations which do not fit the present 

model for the Kalman filter. One such situation could be a 

certain aided inertial systems. Here a noisy measurement of 

velocity is obtained by comparing the inertial and noninertial 

velocity. If a large amount of high frequency noise is present 

in the measurement it may be better to use an average measure

ment over the recursive interval rather than the measurement. 

The idea of an average indicates an integral, which points to 

two states, one being at the present time and one being at the 

previous time, in the measurement equation. 

y^ = M^x(k) + N^x(k-l) + Ôy^ 

With the augmented model the filter equations must be 

rederived. Thç development presented of these equations will 

follow that suggested by Brown and Hartmann(3)C Following 

these filtering equations, the fixed interval smoothing equa

tion will be developed. The development will follow the 

method presented by Meditch (13).' The order of the inverse in 

the algorithm will be the same as the dimension of the measure

ment, thus implementing some of the ideas presented by Cox (5) 

and Kauch (19). The end result is a very interesting al

gorithm similar to that of Cox. 
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A. Delayed State Kalman Filter 

The system model will include the delayed state in the 

measurement equation, i.e., 

x(k+l) = (D(k+l,k)x(k) + 

y^ - M^x(k) + N^x(k-l) + 6y^ 

The first thing that should be done is to twist the new sys

tem model into the usual Kalman format. Therefore, the dif

ference equation will be 

\+l \ • n 

= F — — — + -

> _ JV 0 

where 

^k = 

ffi(k+l,k) I 0 
I 

1 

+ 6Y, 

and the measurement equation will be 

Jk_l 

where 

\ = [«k 1 • 

nlLii Liie dLove equations the filter equation can ne written 
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by inspection 

x(k+lA+l) x(kA) 

x(kA+l) 

II 

x(k-lA) 

+ B{k+l)[y -L, 
k+1 k+1 k 

x(kA) 

x(k-lA) 

Following the method used by Sorenson (21) the gain matrix 

is found to be 

B(k+1) = 

"bj_(k+l)" 3(k+1 A) +(D(k+l,k) P(kA) 

bgtk+l) P(kA) (D (k+1 A) +P(kA)N^^3L 

where 

l,k)P (kA) 1^+1 

+ lkA)m' (k4-i,k)M;,^i + + «k+1 

and 

P(k+lA+l) = P (k+1 A) - b^ (k+l)C^^^b^(k+l) 

P(k+lA) = {D(k+lA)P(kA)ffl'(k+l,k) + . 

Now, separating the filter equation into components^ two equa

tions can be written. The first .is the filter equation 

for the delayed state model and the second is the one step 

back smoothing equation. 

X (k+lA+1) = {D(k+lA)x(kA) + bj^ (k+1) (k+lA)x(kA) 

- N^^j^x(kA) ] 
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x(kA+l) = x(kA) + b2(k+l) - Mĵ ^̂ {D(k+l,k)x(kA) 

- N^^^x(kA) ] 

Notice, by proceeding in the above fashion more was ob

tained than was bargained for. This should indicate a method 

for deriving the multiple step smoothing equation. By add

ing the appropriate unitary matrices to the matrix and 

the x^ 1'^ 2'''''Gtc. to the state vector, the recursive 

estimation scheme illustrated above should yield the solu

tion to the two-step back smoothing problem, the three-step 

back smoothing problem, and so forth, along with what has 

been presented. However, obtaining these additional solu

tions could be quite time consuming and messy. 

B. Fixed Interval Smoothing Equation for the 

Delayed State Kalman Filter 

Instead of proceeding as was indicated in the last sec

tion, the development of the desired smoothing equations 

will follow the development presented by Meditch (13). The 

philosophy being used is to start at the final time point of 

the existing data and develop first the one-step back smooth

ing equations, then the two-step back smoothing equations, 

and then by induction the general equations. 

The one-step back equation was derived when the delayed 

state filtering equation was obtained in the previous section. 

This equation will now be rewritten so that the development 
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will start from the last data point at t^. 

x(n-l/n) = x(n-l/n-l) -bgfn-l) y(n/n-l) 

where 

y(n/n-l) = y^ - + N^]x.(n-l/n-l) 

b^Cn-l) = + 

+ N P(n-l/n-l)a)' ^ ,M' + N P(n-l/n-l)N' + R . 
n n,n-i n n n n 

Now the two-step back problem will try to be solved, 

that is, find an expression for x(n-2/n) given 

^^l'^2" **^n-l'^n^* By definition then 

x(n-2/n) = E[x(n-2)/y^,...,y^_i,y(n/n-l)] 

where y(n/n-1) is independent of the set of measurements 

{yj^,... ,y^_j^} . Thus, since the random variables are Gaussian 

x(n-2/n) = E[x(n-2)/y^,...,y^_^]+E[x(n-2)/y(n/n-l)] . 

The first term above is just the definition of the one-step 

smoothing problem which has already been solved. The second 

term is evaluated by using theorem 9.11 from (14), which means 

x(n-2/n) = x(n-2/n-l) + P^P~~""^y( n/n-1) 

where 

y(n/n-1) = y^ - y(n/n-1) 
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P~~ = E[y(n/n-l)y' (n/n-1)] = 

x(n-l) = x(n-l) -x(n-l/n-l) 

= i^n-l, n-2-'^l ',n_2+ Kn_i]]%(n_2) 

Pxy = E[x(n-2)y' (n/n-1)] = E([x(n-2)-x(n-2/n-2)]x'(n-l) 

• [Vn,„-l+''n]'5= P("-2/n-2lVl,n-2-''l'"-l' 

tVlVl,n-2 + Vj?' + ' ' 

Therefore, 

x(n-2/n) = x(n-2/n-2)4-P(n-2/n-2)[M^_^m^_^ ^_2 + N^_^]' 

• C^^;iy(n-l/n-2) +P(n-2/n-2)[m^_i ^_2-bi(n-l) 

• n-2 + ^ V„, „-l + «ni ' 

. C~^y(n/n-1) 

Proceeding as above, a solution to the three-step back 

smoothing problem will be found. By definition 

x(n-3/n) = E[x(n-3)/y^,—,y^_^,y(n/n-l)] 

= E|'x(n-3)/y^,—,y_ ^ ] +Erx(n-3)/y (n/n-1 ) ] 
X iA—-L. 

= x(n-3/n-2) + Pxy P^~^ y (n/n-1) 
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where 

x(n-l) = x{n-l) -x(n-l/n-l) 

• ["n-2V2,n-3 + V2^5S("-3) + 

• [VlVl,n-2-^ VllUl -bi(n-2)M^_2Î9n-3 

+ [I - bi(n-l)M„_i]g„.2 - I Vl,n-2-^'"-l' 

• [VlVl,n-2 + '"-2' &yn_2 " '='1 <""1'^^n-l 

Pxy = E[x(n-3)y'Cn/n-l) ] = E[ (x(n-3) + x(n-3/n-3) )x' (n-1) 

-[Vn,n_l+P<n-3/n-3)[UDn_l,n_2-bi(n-ll 

• K-lVl, n-2 + Vl3]'tVl,n-3 -

•CV2V2,n-3'^V2]î'[Vn,n-l+''„]' " 

Therefore, 

x(n-3/n) = x(n-3/n-3) + P(n-3/n-3) [M (D i+N 
n—z n—Z/ii—X n—z 

.c~];2y(n-2/n-3) +P(n-3/n-3){ffi^_2 _3-b^(n-2) 

• ["n-2°'n-2, n-3 + „-2 + \-l 1 ' 

• C|^^j^y(n-l/n-2) +P(n-3/n-3)im^_2 Q b^(n-2l 

• i"n-2*n-2.n_3 + V2Ji ' t%-l,n-2 " 
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• , n-2 + Vl ] Î ' ̂  Vn, n-1 + V ' 

This can be simplified as follows 

x(n-3/n) = x(n-3/n-3) + P(n-3/n-3) Z d(n-3, i) [M.(D. . ,+N. ]' 
i=n-2 1 i.i-i 1 

.C-ly(i/i_l) 

where 

d(n—3,n—2) — I 

i-1 
d(n-3,i) = n {ffi. . , -b, (j) [M.ffi. . i + Nj]' 

j=n-2 J J 

for i=.n-l,n 

Now proceeding with the induction, it is assumed that 

n 
x(k+l/n) = x(k+lA+l) + P(3c+lA+l) Z d(k+l,i) [M.ffl. . n+Nj' 

i=k+2 1 1 

.C~^y(i/i-l) 

where 

d(k+l.,k+2) = I 

d(k+l,i) = d(k+l,i-l)ia)^_j_^^_2 - b(i-l) 

+ for i=k+3,...,n 

w OOOCUil̂ U.̂ WAX W11̂  XiA UiiO dCUllC lUOllIlCi. 

as the above, the n-k^^ step smoothing problem will be 
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solved. By definition 

x(k/n) = x(]c/n-l) + Pxy Pyy~^ yin/n-1) 

since 

•^®n]2,n-3 - [V2V2,n-3 + V21Î' " ' ' 

+ :[92 9n-2] + -[^yk+l 

where 

f(') and h(*) are linear functions and 

Pxy = P(kA) Jn\lD. _ N. ]]• 

it may be written that 

A A n—1 , 
x(k/n) = x(k/k) + P(k/k) S d(k,i)[M.(D. . ,+N.]'cT y(i/i-l) 

i=k+l 1 1,1-1 1 1 

+ P(k/k)d(k,n)[M ffi , + N ]'c~^y(n/n-1) 
n n,n-l n-^ n 

n , 
= x(k/k)+ P(k/k) Z d(k,i)[M,m. . , + N.JcT y{i/i-l) 

i=k+l 1 1,1-1 1 1 

where 

d(k.k+l) = I 
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d(k,i) = 

for i=k+2,... ,n 

The induction proof is complete and gives the general 

fixed interval smoothing equation for the delayed state 

model. This equation can be put into a more useful form 

by noting that 

d(k,i) = d(k,k+2)d(k+l, i) i=k+3,...,n 

and if 

n , 
z(k,n) = Z d(k,i)[M.{D. . ,+N. ]' C7 y(i/i-l) 

i=k+l 1 1,1-i 1 1 

N , 
+ d(k,k+2) Z d(k+l,i) (M.fl). . ^ + N J ' cT y(i/i-l) 

i=k+2 X 1,1-1 1 1 

= a(k,k+2)z(k+l,n) + (Mk4.l'°k+l,k + '^+l)'4;+iy'k+]A) 

then 

x(k/n) = x(kA) + P(kA)z(k,n) 

where 

z(k,n) = d(k,k+2)z(k+l,n) +Cj^^^y(kH]A) 

z(n-l/n) = +N^]' c;ly(n/n-l) 

z(n,n) = 0 
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Since z(k,n) has the same dimensions as x(k/n), this 

equation is similar to the fixed interval smoothing equa

tion developed by Cox (5). Therefore, this algorithm has 

the same problems as the one by Cox and others. In the 

computation the recursive expression for the covariance 

matrix does not follow the backward movement of the equa

tions. There are three ways to compute x(k/n). The first 

is to place in memory all the a posteriori covariances that 

are needed. This method becomes ridiculous when the size of 

the system is large. The second method would be to write a 

recursive relationship that will propagate the covariances 

in the backward direction to match the rest of the computa

tions. But, such a relationship would involve an inverse of 

a matrix of the order of the system. This is one of the prob

lems that is trying to be circumvented by writing the smooth

ing equations with all the data present. The last method, 
r .  

which seems to be a reasonable one when the system is large, 

is computing in the backward direction just the z(k,n) matrix 

for the whole interval of interest. Then, calculate x(k/n) 

in the forward direction carrying along the calculations of 

the covariance matrix. The only things that are then needed 

to be remembered other than the estimates, which are needed 

in any method, are the vector z(k,n) and the initial co-

variance matrix, to start the covariance computation. This 

method is illustrated in the flow chart in Figure 2. 
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y(k+l/k) 

kfl kfl,k kfl 

Memory 

V P(k/k-l) 

bi(k)Ci^bi(k) 

d(k,ki-2) delay d(k,ki-2) 

kfl kfl.k k k+] 

P(k/k) I 

x(k/k) 

Figure 2. Flow chart for the smoothing equations for the 
delayed state model 
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C. Fixed Point Smoothing Equations for the 

Delayed State Kalman Filter 

In order to derive the fixed point smoothing equation one 

r .  

must stop sooner in the development of the fixed interval equa

tions. Going back to the induction proof used to derive the 

fixed interval smoothing equation, it was written by defi

nition 

x(k/n) = x(k/n-l) + Pxy y(n/n-l) 

which could have been left to be 

x(k/n) = x(k/n-l) +P(kA)d{k,n) N^]' 

.C~^y(n/n-l) 

This equation can be interpreted as being the fixed point 

smoothing equation. That being that the estimate of the 

state variable at time k given the data through time n-1 

is up-dated with weighted data at time n to form the esti

mate at time k given the data through time n. 

By this development, it is evident that the only dif

ference in the two smoothing algorithms, fixed point and 

fixed interval is the method in which the smoothed estimates 

are calculated. The most important difference in the com

putations is the fact that the fixed point algorithm is 

on—lino. fiyed interval ons are done 

after the fact. But, if n-k, the number of points in the 

• j  
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fixed interval, is small and if a large computer was avail

able, it could be possible to form an on-line fixed interval 

smoother made up of n-k fixed point smoothers. 

D. Covariance Equation for the Smoothing Scheme 

The covariance matrix for the smoothed estimate was not 

needed to form the smoothed estimate. This is true in most 

smoothing schemes. To add a measure of completeness to the 

new scheme presented in the second section, the error co-

variance equation for the smoothed estimate will be formed 

in this section. 

By definition, the error covariance is 

P(k/n) = E[x(k/n)x' (k/n) ] 

where 

x(k/n) = x(k) -x(k/n) . 

Substituting the error equation into the smoothing equations, 

it follows that 

x(k/n) = x(k) -x(kA) -P(kA)z(k,n) 

= x(k) - P (k/k) z (k, n) 

which implies that 

P (k/n) = E[x(k/n)x' (k/n) ] 

= E[x(k)x'(k) ] - E[x(k) zf(k, n)P'(kA) ] - E[P(k/k) 

.z(k,n)x'(k) ] + E[P(kA)z(k,n)z'(k,n)P'(kA) ] 
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= P(kA) - E[x(k) z'(]c,n) ]P'(kA) -P(kA) 

/E[2(k,n)x' (k) ] + P(kA)E[z(k,n)2' (k,n) ]P'(k/n) 

where 

z(k,n) = Z d(k,i)[M.(D. . , + NJ'CT y(i/i-l) 
i=k+l 1 i.i-x 1 1 

y(i/i-l) = N^)x(i-l) + 6y^ 

*(%) = [Vk,k-1 + + [I -

Looking at the third term of the error covariance equa

tion term by term, it follows that for i=k+l 

E[z(k,n)x' (k)] = \+i)' ̂ +i^^+i®k+i,k'''^k+1^ 

P(kA) . 

For i=k+2 

E[z(k,n)x'(k) ] = d(k,k+2) (Mj^^2®k+2,k+l'^ ̂ k+2^' ̂ +2^\+2®k+2,k+l 

+ (k,k+2)P(kA) 

and in general, when i=j where k+2 < j <n 

E[z(k/n)x'(k)] = d(k,j)(Mjmj Nj) 

[d'(k,j)P(kA) 

Therefore, summing up all the terms 
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n _i 
E[z(k,n)x' (k/k) ] = [ Z d(k,i) (M.ffi. . , + N. )' C. 

i=k+l 1 i,i-± 1 1 

.(MiîDi i_i+N^)d'(k,i)]P(k/k) 

Now the two middle terms in the equation for the error 

covariance for the smoothed estimate can be written as 

E[x(k)zXk,n)]P' (kA) - P(kA)E[z(k,n)5c'(kA) ] 

n 
= 2P(kA)[ Z d(k,i)P (i-l/i)dTk,i)]P(k/k) 

i=k+l z 

where 

Now, to finish the evaluation of the error covariance, 

the term E (z (k, n) z'{k, n) ) must be evaluated. Using the defi

nition of P^(i-l/i) and .expressing it in more general terms 

P^(i/j) = E[z(i, j )2'(i, j) ] 

a recursive relationship will be formed so that P^(i/j) can 

be evaluated as the process steps along. The first terms 

of such a relationship can be written by inspection 

The second term is by definition 

= d(n-2,n)E[z(n-l,n) z'(n-l,n) ]d' (n-2,n) 
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+ d(n-2,n)E[z(n-l,n)y'(n-l/n-2) 

+ V+ <VlVl,n-2-^'^n-l''=n-l E[5(n-l/n-2) 

. z'(n-l,n)]d'(n-2,n)+ n-2 ̂  "n-l'' 

• E[y(n_l/n_2)y'(n_l/n_2)]c;l^(Mn_imn_i,n_2 

+ «n-l' 

where 

E[z(n-l,n)y(n-l/n-2)] = N„)'c;^(Mn®n,n-l+ 

. d'(n-2,n)P(n-2/n-2) (M„_iVl,n-2-' Vl' 

+ (Vn,n-1 + Vl 

• On-2Vl 

- 'Vn,n-l + '^n'' 'Vn,n-1 +'""l'Vl 

which reduces to 

P^(n-2/n) = d(n-2/n)P^(n-l/n)d'(n-2,n) + P^(n-2/n-l) 

Now by assuming 

P^(k+l/n) = d(k+l,k+3)P (k+2/n)d'(k+l,k+3) + P (k+lA+2) 

and proceeding as was done previously it can be shown that 

D /T^ \ - VJ.  ̂ a, n fT^ 1 \ 
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which proves by induction that the above equation is the 

expression for E[z(k,n)z'(k,n) ]. Using the identities for 

d(k,n) given in the preceding sections the above expression 

for E[z(k/n)z'(k,n) ] can be rewritten. 

n 
P, (k/n) = Z d(k,i)P^(i-l/i)d'(k,i) 
^ i=k+l z 

where 

PL(i-1/ï) = (M.m. . T + N. )'c7^(M.ffl. . i + N. ) 

Therefore, 

n 
P(k/n) = P(kA) - 2P(kA) [ Z d(k,i)P^(i-l/i)d'(k,i) ]P(kA) 

i=k+l z 

n 
+ P(kA)[ Z d(k,i)P^(i-l/i)d'(k,i)]P(k/k) 

i=k+l ^ 

P(kA) -P(kA)P2(k/n)P(kA) 
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V. DECOUPLING OF THE DELAYED STATE MODEL 

FILTERING AND SMOOTHING EQUATIONS 

To add completeness to the delayed state model equa

tions, these too will be decoupled when bias states exist. 

Therefore, the effective system size will be reduced by ap

plying the idea of parallel computations as Friedland (7) has 

done for the regularly modeled systems. Because of the sys

tems that can be twisted into the delayed state model the 

decoupling of the equations for this model should be useful. 

For example, it has been mentioned previously that aided 

inertial systems fall into this class of systems especially 

those systems with bias states defined. Here computer size 

and computation time are at a premium. So, if decoupling 

the equations alleviates some of these specifications it 

would be well worth the time and effort. 

The first section of this chapter presents the decoupl

ing of the filtering equations derived by Brown and Hartmann (3) 

and presented in the last chapter. Many additions had to be 

made to Friedland's method because of the delayed state 

present in the measurement equation. After much juggling 

of equations it will be shown that the estimate of the state 

vector X at time k given k data points can be decoupled when 

the system has been augmented because of biases present. 

Proceeding further, the second section presents the 

decoupling of the smoothing equations derived in the last 

1 
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chapter when the model of the system has bias states present. 

The most difficult part of this development is writing the 

expressions for the portions of the z(k,n) matrice. The re

sults of this development do not appear as simple as those 

presented in Chapter III. This is because of the cross cou

pling involved due to the presence of the delayed state vec

tor in the measurement equation. 

A. Delayed State Kalman Filter with Bias States 

Friedland has offered a scheme to decouple the computa

tion of bias estimates and the state estimates to save time 

and money. Of course the saving is greatest in large sys

tems with about the same number of bias variables as there 

are states. This saving would also be of interest to people 

trying to use the delayed state Kalman filter equations. 

Therefore, the rest of this section will consist of the de

velopment of the decoupling of the delayed state Kalman fil

ter with bias states. 

The dynamical equation for this development are the same 

as before except the delayed state explicitly occurs in the 

measurement equation. 

x(k+l) = A^x(k) + B^b(k) 4- g^ 

b(k+l) = b(k) 

y(k) = M^x(k) + Nj^x(k-l) + C^b(k) + ôy^ 
r i-* 
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If the state vector is augmented to include the bias state 

by redefining the state vector as 

x(k) 
Z(k) = 

b(k) 

the dynamical equations are 

Z(k+1) = F%Z(k) +Gg^ 

y(k) = I^Z(k) + J^Z(k-l) + ôy% 

where 

i 
LP I i_j 

G = 

I Ck] 

Jk = [\ 1 0 ] 

From the review of the delayed state Kalman filter, the 

equations for the best estimate of Z at time k+1 given the 

set of observations [y(1),y(2),...,y(k+1)] are as follows 

Z(k+lA+l) = F^Z{kA) +W(k+l)[y(k+l) - (L^^^F^+J3^̂ ĵ )Z(kA) ] 

•uiT-VOY-O 
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W 
-1 (k+1) = p(k+i/k)L;̂ ^̂ D̂ ^̂  

Dk+1 = Lk+lP(k+l/k):%+i +Lk+lF% P(k/k)j;^i+ Jk+iP(k/k)Fi^t^i 

+ Jk+lP(k/k)Ji^l + Rk+1 

P(k/k) = [I-W(k)L̂ ]P(k/k-l) -W(k)Ĵ P(k-l/k-l)F'̂ _̂  

P(k+1A) = F̂ P(kA)Fj,+GQĵ G' 

Now, define P(k/k-1) as the covariance which is the solution 

to the above equation for the a priori covariance for the 

initial conditions 

P„(0/-1) I 0 

P(0/-1) = 
X 

0 ! 0 

Therefore, a general solution may be written as 

P(k/k-1) = F(kA-l) + U{k)M(k)U' (k) 

where here again M(k) is an r x r symmetric matrix. The 

last term of the above equation comes from the fact that 

and 

Pb(0/-1) / 0 

U(k+1) = F [I - W(k)E, ]U(k) 

M(k+1) = M(k) -M(k)U' (k)Eĵ D̂  Ê U(k)M(k) 
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where 

W(k) = P(k/k-l)L^C^l + F%_^P(k-l/k-l)J^D-l 

= L%P(k/k-l)L^+ L%F%_iP(k-l/k-l)J^+J%P(k-l/k-l)F^^lL^, 

+ J%P(k-l/k-l)J^+R%^ 

V k i î  =  [ % _ ! + =  V k i i  •  

The proof of the above equations is in Appendix A. Proceed

ing on as was done in Friedland's original paper (7) the a 

posteriori covariance equation is written as 

P(kA) = P(kA) + V(k)M(k+l)V'(k) 

Using this fact and the two previous equations for the a 

priori covariance equation it follows that 

U(k+1) = F^V(k) 

which implies that 

V(k) = [I-W(k)E^]U(k) 

or which can be written as 

v(k) = [F̂ _̂ -W(k)Ë̂ ]F̂ ;;];U(k) = [F̂ _̂ -W(k)Ë̂ ]Û(k) . 

Next, the expression for will be derived by using 

the identity for Ë and the a priori covariance equation 

= Lj^P(kA-l)l^+I^[P(kA-l) -GCij^G'] 
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-1, 

+ JkfkZÏ^ètk/k-i) 

= Ê [P(k/k-l) -GQ̂ Ĝ E;̂ + Î GQ̂ G'L̂ + 

= Vk:I[F(kA-l) - GQ^GT (F^_i)-%+ L^GO^G' L^+ 

Now the expression above is expanded taking small portions 

of the equation at a time. 

F̂ _]̂ [P(kA-l) -GQ̂ Gl(Fĵ _j^) ^=P(k-lA-l) = 

P̂ (k-lA-l) ' 0 

0 0 

I^GQkG' I C^] 

Ok ! ° 

0 I 0 
= "k^k^ic 

E. t = ["k\-i + "k I .Vk-1 + • 

Therefore, 

5k = C«k\-1 + \]5^(k-lA-l) [Hk^k.! + N^]'+ Wk + Rk 

= Hj^P(kA-l)H;^+Hj^A^_j^Pj;(k-lA-l)NJ.+ y^(k-lA-l) 

+ Vx(k_lA-l)N{^+R^ . 

Next, the expression for W(k) will be derived by expanding 

the following 

W(k) = P(k/k-l)Ê D̂  ̂- GQ̂ Ĝ  (̂ k-1̂  "̂̂ k̂ k 
-1^, %-l 
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[5(k/k-i) (f^.i)-\-gq^G' 

where 

P(kA-l) (F̂ _i) -1 
P (̂k/k-l)(A )̂-l I 0 

0 0 

P (̂kA-l)H^+Pjj(kA-l) 

0 

°°k°' = 
Ôk'^-l'"'< 

Then it follows that 

W(k) = 

P^(i/k-l)H^+ (P^(kA-l)-Q^) ^^k 

0 

D. 
-1 

Px (kA-1) Vî K (k-i A-i ) 

w^(k) 

Now, the expression linking U(k) and V(k) must be ex

panded. First, however, some identities must be established 

from past equations. Since 
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U(k) = F%_iU(k) 

then 

\-l I ®k-l 

0 I 

"x'k' 

j 0^(k) 

Also, 

U(k+1) = 

U^(k+1) 

U^(k+1) 

f; I B, 

= F^V(k) =, I 

|0 I 

V (k)| 
A 1 

Vj,(k) 

.71 

Vj^(k) 

and 

v^{k) 

v^(k) 
= (F -W(k)Ej^)U(k) 

\-l - "x »=' Hk\-1 + "k 1 \-l - "x Vk-1 + Ck 

"x'W 

\(w 

A,,_l«,(k)+B|^_lU^(k)-W^(k)[Hj^ [ A^_lUx(k)+Bj^_j^Uj^(k) ]+ (k)+C^U^ (k ) 

Cb(k) 
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7 (k) +%(k) +C^U^(k)" 

—  — —  "  — —  — -  — —  "  — »  — •  

U^(k) 

The above equations imply that 

U^^k) = V^(k) = U^(0) = Constant, for all k 

If it is assumed x and b are independent at k = 0^ i.e., 

and if 

U^(0) = I and U^(0) = 0 , 

then 

V^(k) = U^(k) -W^(k) [Hj^U^(k) + \Û^(k) + C^] 

= U^(k) -W^(k)T(k) 

M(k+1) = M(k) -M(k)T' (k)D~^T(k)M(k) 

U^(k+1) = \V^(k) +B^ . 

The above expressions also allows the components of the co-

variance matrices to be simplified as follows 

p^(k/k-i) = p(kA-i)+u^(k)M{k)u^(k) 

Pxb^^A-l) = u^(k)M(k) 

Pjj(kA-l) = M(k) 
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P_(k/k) = P(kA) +V (k)M{k+l)v' (k) 

Pxb(k/k) = V^(k)M(k+l) 

P^(kA) = M(k+1) 

To be able to write the equation for the best estimate 

of the augmented state vector into the partitioned equations, 

the estimate of the bias and state vectors, the gain matrix 

M(k) must be partitioned. The equation for W(k) is as fol

lows 

W(k) = P(k/k-l)L^D-l + F^_^P(k-l/k-l)J^D-l 

where 

P(k/k-l)I^ = 

p^(k/k-i) I P^^^(kA-l) 

|Pb(Vk-l) 

p^(kA-i) + P^b(kA-i) 

+ p̂ (kA-i) c;. 

F^_lP(k-lA-l)J^ = 
i r 0 
I 

p^(k_iA-i) 'P b(k-iA-il 

p;jj,(k-lA-l) 'jP^(k-lA-l^ 0 
. -I 

Â _iPx(k-iA-i) + B̂ _^p;̂ (̂k-1A-1) 

p;,t(k-iA-i)N;^ 
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Therefore 

W(k) = 

W^(k) 

Wj^(k) 

P^(kA-l) ViP^(k-lA-l)N;^ + Bk.lSb<k-Vk-]) N'^ 

.-1 

Looking at the equation for W^(k), it may be reduced 

by using the expression for the components of the covariance 

matrices. 

w^(k) = [p;^jj(kA-iH;^ + Pi3(icA-i)c^+p'j^jj(k-vic-DNyD;^^ 

= [M(k)U'^(k)H;^ + M(k)C^ + M(k)r^(k-l) 

= M(k)[u;^(k)H^+C^+0'^(k)N^]Dj^^ 

= M(k)T' (k)D: -1 

Now proceeding in the same manner the gain W^(k) is 

reduced. 

W^(k) = [P^ (k A-1 ) (k A-1 ) C + A^_^P^(k-lA-l)N^ 

= ŵ (k) + v̂ (k)Wĵ (k) 
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The proof of the above equation is found in Appendix B. 

The best estimate of the augment^ state vector is written, 

as before, 

Z(kA) = F^_^Z{k-lA-l) +W(k) [y^- + J^) Z (k-lA-D ] 

which can be rewritten as two equations , 

x(kA) = Aj^_^x(k-lA-l) + Bj^_j^b(k-lA-l) 

1 Ê(k-lA-l) ] 

and 

b(kA) = b(k-lA-l) + W^[y^- (H^Aj^_^ + N )̂x(k-lA-l) 

— (HJ B̂J^̂  ̂+ Cĵ ) b (k—1/k—1) ̂ . 

Let x(kA) be the bias-free estimate, i.e., 

x(kA) = A^_^x(k-l/k-l) +Ŵ (k) [ŷ  - (Hj^A|^_^+Nj^)x(k-Vk-l) ] 

and W^(k) is the bias-free gain given earlier. The result 

that is to be shown is 

x(kA) = x(kA) + V (̂k)b(kA) 

To prove this result, the residuals of the partitioned equa

tion will be written as 

Yy.- + N )̂x(k-lA-l) - (HJ^B^_3^+ Cj )̂b(k-lA-l) 
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= +\)x(k-lA-l) - (H%A%_iV̂ (k-l) 

+ N̂ v̂ (k-l) + + Ĉ )Ê(k-lA-l) 

= (Ĥ Û Xk) + V̂ û̂ (k) + Ĉ )b(k-lA-l) 

= Y]̂  - T{k) b(k-lA-l) 

where -Ĥ Â _̂ x(k-lA-l) = the residual of the bias-

free estimation. Using this result the expression for 

b(kA) is 

b(kA) = b(k-lA-l) +Wĵ (k) [y3̂ -T(k)b(k-lA-l) ] 

= [I-Wj (̂k)T(k) ]b(k-lA-l) +Wj (̂k)9̂  

and the expressions for x(kA) is 

x(kA) = î _̂ x(k-lA-l) + [î _3̂ V̂ (k-l) + -Ŵ (k)T(k) ] 

. b(k-lA-l) + Ŵ (k)Y]̂  

which implies that 

x(kA) = x(kA) + V̂ (k)b(kA) = x(kA) + V̂ (k) [l-Ŵ (k)T(k) ] 

. b(k-lA-l) + V̂ (k)Wĵ (k)Y3̂  

= Â _̂ x(k-lA-l) + [Â _3̂ V̂ (k-l) + + Ŵ (k)T(k) ] 

. b(k-lA-l) + Ŵ (k)Ŷ  

for all k, Y]̂ ' b(kA) . This requires that 
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V^(k) [l-W^(k)T(k) ] = \_iV^(k-l) + - W^(k)T(k) 

since 

W^(k) = W^(k) + V^(k)Wj^(k) 

which can be reduced to 

V^(k) = \(k)W^(k)T(k) +A^_iV^(k-l) +B^_^-W^(k)T(k) 

= u^(k) -w^(k)T(k) 

which is the expression for V^(k) previously derived. Hence 

the desired result, 

x(k/k) = x(k/k) +V (k)b(kA) 

has been proved. 

This result is the same as Friedland obtained in his 

paper except some of the matrices in the development are 

different because of the delayed state. Therefore, there 

is also a savings in the delayed state Kalman filter by 

modeling a system with biases and then decoupling the com

putation, as was indicated for the regular Kalman filter. 

B. Fixed Interval Smoothing Equations for the 

Decoupled Delayed State Kalman Filter 

The justification for deriving this decoupled fixed-

interval smoothing equation will be the same as was given 

in Chapter Ilf when that smoothing equation was derived for 
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the decoupled Kalman filter. 

Again the development is started with the augmented 

difference equation, which are repeated here for convenience. 

Z(k+1) = F^Z(k) + Gg^ 

= l̂ z(k) + Ĵ Z(k-l) + 

where 

x(kT I 

Z(k) = — — II t G = — — 

b(k) -0 0 

Using the above notation, the fixed-interval smoothing equa

tion will be 

-1~ 

Z(k/n) = Z(k/k) + P(kA)z(k,n) 

z(k,n) = d(k,k+2)z(k+l,n) + [L3^^3^,F^+J^^^]'I>j^^J;y(k+lA) 

where 

y(k+l,k) = (Lj.+iI'k+Jk+i)z(kA) 

d(k,k+2) = a(k,k+l)[F^-W(k+l)[L^^^r^+J^]}' 

d(k,k+l) = I 

Since z(k,n) can be partitioned as follows 

z(k.n) = 

z^(k,n) 

Zj^(k,n) 
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the augmented smoothing equation may be written as the fol

lowing two equations : 

x(k/n) = x(kA) + Pĵ (kA)ẑ (k,n) + P̂ ĵ (kA) Zĵ (k,n) 

b(k/n) = b(kA) + P̂ jj(kA)ẑ (k,n) + Pĵ (kA)zĵ (k,n) 

Using the results of the first section of the chapter, it 

follows that 

x(k/n) = x(kA) + Pjj(kA)z (̂k,n) + V (̂k)b(k/n) 

In order to decouple the smoothing equation fully, z^(k,n) 

must be written as a function of z^(k/n), that term from the 

smoothing equation for the bias-free system. The needed re

lationship is 

z^(k,n) = z^(k,n) - e(k+l,n) 

where 

e(k+l,n) = D^+iT(k+l)b(k+l/n) 

+ d(k,k+2)e(k+2,n) 

The development of this relationship is in Appendix C. 

Therefore, it follows that 

x(k/n) = x(k/n) + V (k)b(k/n) - P (kA)e(k+l,n) 

where 

e(k+l,n) = ^^j|^b(k+l/n)+d(k,k+2)e(k+2,n) . 
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Notice that because of the delayed state in this model 

of the system, the best smoothed estimate of the bias at 

time k given the data through time n is not b(n/n) as was 

the case in Chapter III. Therefore, as is indicated, the 

smoothed estimate of the state x(k/n) is dependent not only 

on the decoupled terms, x(k/n) and b(k/n), but also on all 

the previous smoothed estimates of the bias, b(k+l/n), 

Ê(k+2/n),...,b(n/n). 
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VI. COMPARISON OF RECURSIVE SMOOTHING 

VERSUS BATCH PROCESSING 

The idea behind batch processing is to manipulate all 

the data at once, where as in a recursive scheme the data is 

processed one point at a time. Of course, hidden in the 

recursive method is the use of all previous data via the 

use of the past estimates. The idea of batch processing 

was dropped as an on line method when the recursive schemes 

were presented because of the size and number of computa

tions that are involved. Another disadvantage of the batch 

processing methods was that each time a new data point was 

received the order of the problem or equation that would 

have tp be manipulated would increase. So, when Kalman in

troduced his recursive equations, his method had many ad-, 
I ' 

vantages just because of their recursive aspect. To re

affirm ones faith in recursive equations, two methods of 

batch processing will be compared to the recursive smoothing 

equation developed in the previous chapter. In order to make 

the comparison, system size and smoothing interval must be 

chosen. The smoothing interval will be 36 steps and the 

system size will be 16 states. This choice is consistent 

with the example to be given later. 

L 
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A. Fixed Interval Batch Processing 

The fixed interval batch processing could be ration

alized from the fact that any estimate is a function of the 

input data. Therefore, the set of equations for the set of 

smoothed estimate for the 36 point interval can be written 

as 

x(l/36) = k^(l)y(l) +kj^(2)y(2) + ...+ k^(36)y(36) 

x(2/36) = }C2(l)y(l) +k2(2)y(2) + ...+ k2(36)y(26) 

x(36/36) = k3g(l)y(l) +k3g(2)y(2) + ... + k3g (36) y (36) 

where k^(j) are the weighting coefficients. These coefficients 

have to be chosen in some optimal fashion. Looking at the top term 

of any one of the above equations, the mean squared error is given 
by 

e^ = [x(n/36) - x(n) = x^(n/36) - 2x(n/36)x(n) +x^(n) 

= [k^^(l)y^(l) +k^^(2)y^(2) + ... + k^^(36)y^(36) ] 

+ 2[k^(l)k^(2)y(l)y(2) +k^^l)k^(3)y(l)y(3) + ... 

+ k^(2)kn(3)y(2)y(3) ... ]- 2[k^(l)y(l)x(n) 

+ k_(2)y(2)x(n) + . ..+k_(36)y(36)x(n) ]+ x^(n) 

for n ̂  1,2,...,36 . , 
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The k^(j) components must be found to minimize e®. There

fore, if the derivative of e^ is taken with respect to k^(j) 

components, i=l,2,...,36 and set equal to zero for all n, 

the following set of equations must be solved. 

9 . . . . 
y"(l) y(l)y(2) ... y(l)y(36) k„(i) y(l)x(n) 

y(2)y(l) y^(2) ... y(2)y(36) 
/ 

kn(2) 

= 

y(2)x(n) 

y(36)y(l) y(36)y(2) ... y%(36) k (36) 
L n J 

y(36)x(n) 

This equation looks innocent enough and is easily solved, 

given a computer. However, this is just part of the situation. 

The first clue as to the situation is the size of the con

stants, k^(j ), j = 1, 2, ..., 36. If it is assumed that the measure^ 

ments are scalars, the best possible condition to reduce size, 

the constants are 16x1 vectors. Therefore, in order to solve 

for the constants from the above equation, 16 systems of 36 

equations in 36 unknowns must be dealt with. Plus, if all 36 

smoothed estimates are to be computed, a system of equations of 

the same order must be solved 36 times. But, if this were not 

enough, each known variance and covariance indicated in the 

above matrix equation must be evaluated. Using the set of dif

ference equations used in Chapter IV to describe the delayed 
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state system, it follows that 

y(i)y(j) = H(i)x(i)x' ( j ) H' ( j ) + N (i)x(i-l)x' ( j )H' ( j ) 

+ 6y^x' (j)H' ( j ) + H(i)x(i)x' ( j-1) N' (j ) 

+ N(i)x(i-l)x' (j-l)N' (j) + 6y\x' (j-l)N' (j) 

+ H(i)x(i)6yj+N(i)x(i-1) by'j +6y^by'j 

where 

X(i) = !D._._^x(i-l) + = +®i;i_igi_2 + 9l-l 

i 
— « « » — (D. J-.X (0)+ 5] ffl. .<3^-1 • 

1 u j_2 i/J J -J-

In order to evaluate y(i)y(j) = E[y(i)y(j)] the following 

equation must be evaluated 

E[x(l)x(j)]= E[(I). 0x(0)xr(0)IB^ 0+ Z J: 
H— J_ K— _L 

= m. _gE[x(0)x' 

Since the first term is a constant or bias term it can be 

subtracted out of the equation. Then all that is left is 

E[x(i)x(J)] = S • 
^ JC— J_ 

Since all the matrices in the above equation are 16 x 

16 it will be a formidable task to form the above equation 

even if a diagonal matrix. Note that the above equation 
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is just one term of E[y(i)y(j)] which is just one term of 

the 36 X 36 matrix needed to find the coefficients k (j), 

j =1/2/...,36. There are approximately 5,265 triple sums 

of the form indicated above to be evaluated in order to 

solve the 16 systems of 36 equations needed to form the 

smoothed estimates. One can see that if the number of 

smoothed estimates increases the number of operations given 

here increase many times. So, it is fair to say that in 

this batch processing scheme the size of the system, not the 

nature of the computations, makes the smoother a very dif

ficult operation. 

This method uses the recursive filter equations to de

rive the best estimate of the state vector given all the 

data from the 36 point interval. Instead of the usual dif

ferences equations, the following will be used. 

B. Fixed Point Batch Processing 

x(k+l) = 

-k+1 ' 

where 

^k+l 

^k+2 

•) 
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To find A and ÔY, the measurement equations 

Yl = M^x(])+ N^x(0)+ 6y^ 

y2 = M2x(3+ N^xOD^ by2 

^36 = "36*°®'"36'''^®'^ '^36 

must be put into the form indicated above. After the fil

tering equations have been applied the results will be the 

36 smoothed estimates of the state variable. 

To start with let k+1 = 1 then 

x(i) = (D^^qX(O) +gQ 

= A^x(O) + 6Y^ 

Now A and Y must be found. It follows that 

Yl = (M^tD3^^Q+N^)x (0) + M^gQ+ôy^ 

YB = (^3®3,2^ ̂ 3^®2,1®1,0^ (^3^3,2^^3)^2,190 

+ (M3m3,2+ ̂ 3)91 + M392 + ̂ ^3 

Therefore, 
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-1 ~ + 

6y^ ! 

ôy 36 

where 

'Vi, 0+Ni) 

'"2®2, 1+'^2'®1,0 

(W3O3. 2+^3)02,0 

^^36^36,35 +^36)035,0 

(36 X 16) 

^1 = 

M, 

("2*2,1 + %2) M, 

(M3D3, 2+^3)02,1 (M3O3 2+ Ng) 

0 

0 

0 

0 

0 

_<"35°=3&35+̂ 36'®35,1 35̂  V®35,2 <V35,35+»'3̂ '%5,3 - «36 

(36 X 36-16) 
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= 

'0 

'35 

(36-16 X 1) 

Since 

6yi" 

= 

the covariance of 6Y is 

= BiQiBi + ̂ 1 

where 

o
 o
 

1°
" 

0 . . . 0 

0 Q, 0 . . . 0 

Q, = 0 0 
^2' 

. . 0 

(36 X 36) 

(36 X 36) 

0 0 0 . . . Q 
35 

n 

R, = 

«1 0 

0 

|_0 0 

. 0 

. 0 

3^ 

(36 X 36) 
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The next operation is to find the gain matrix W, which 

is 

where P is the usual error covariance matrix for the state 

variable. Note that one has to invert a 36 x 36 matrix to 

evaluate W. Also, within this equation there are large 

matrix multipliers which are time consuming. Now the 

smoothed estimate will be 

= A^x(0/0) 

To obtain the smoothed estimate x(2/35) the same pro

cedure is followed. 

x(2) = 1^(1) + 

Yg = AgXd) +6X2 

Arranging the measurement equation into the desired form 

implies that 

= PA' (A^PA^ + V^) 

x(l/36) = 0X^0/0)+ 1L-1 " --1 

where 

A, (35 X 16) 2 
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M, 0 0 
2 

M 3 
0 

B 
2 

35"̂ %̂ 3̂5, 2 (̂ 6̂̂ 36, 35'̂ ^̂ 6̂ ®35, 3 M 36 

(35 X 35 -16) 

G 
2 

(35-16 X 1) 

Now one can go ahead and find the gain matrix and write 

down the smoothed estimate. It should be pointed out that 

the sizes of the matrices had been reduced which will re

lieve slightly the computational difficulties. 

This method is to be continued until all the desired 

smoothed estimates are found. The last step should just be 

the nominal filtering equations for the delayed state model 

and the size of the matrices involved in the computation 

will be that of the system itself. Until this step inverse 

operations and matrix multiplies were carried out on large 

matrices causing this method to be inferior when compared 

to the smoothing scheme derived earlier. 
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VII. THE USE OF SMOOTHING IN AN INTEGRATED 

INERTIAL/DOPPLER—SATELLITE NAVIGATION SYSTEM 

The block diagram of Figure 3 summarizes the system 

used in this example, which was presented by Brown (2). 

This system was flight tested and the inertial and Doppler 

satellite systems were operated independently and data from 

each was recorded. Also, the true error curves were ob

tained by accurate radar or check points makes this sys

tem valuable as an example. 

The idea of the Transit system is to aid the inertial 

system by passing on position information. At the present, 

the navigation satellites are circling the earth giving their 

positions as they pass. Of course, under this arrangement 

there will times when the inertial system is out of range 

of any of the circling satellites. During this time the 

Kalman filter for the delayed state model propagates the 

errors just through the dynamics until another satellite 

pass occurs. 

The properties of the inertial system are: 

1. The system is basically terrestial (near-earth), 

and the vertical (altitude) channel is implemented 

by other than inertial means. 

2. The inertial system is strapped-down. This means 

the body mounted and the computer coordinate frames 
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Inertial System Outputs 

True Value + x 

Computed 

Doppler 
Count 

Measured -

Doppler 
Count 

Computer 

Kalman 
Filter 

Transit 
System 

Inertial 
System 

Figure 3. Block diagram for aided inertial system 

r 
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are related by a direction-cosine matrix that is 

continuously updated. 

Using the theory of error propagation in inertial systems 

given by Pitman (18), the system states are defined as 

follows (2): 

= tx 

*3 = 

*4 = 

*5 ~ 

*6 " ̂®y 

*7 = 

Xg = 5R/R 

from the i|)-equation and Schuler 
dynamics (R = earth radius, 
g = gravity constant, and 
m, Q2 = g/R) 

altitude error 

Xg - e^/o)Q 

*10 = 

X, n = £ '/cû 
'11 z 0 -

X, ̂ = 6a„'/R<x) 

*13 = ^ 

*14 = J 

*15 ~ ("Rg/kDo 

*16 = 

body-mounted gyro biases 

body-mounted accelerometer biases 

altitude rate error 

Doppler-count bias error 
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The gyro drifts and the accelerometer errors are 

modeled as slowly varying Markov processes. The Kalman 

filter input modeled by Brown (2) is 

y^ = M^x(k) + Nj^x(k-l) + 

where 

= [0 0 0 lo^ 0 c^ 0 Ra^ 0000000 1] 

= [0 0 0 -b^_^ 0 - c^_^ 0 - Ra^^i 0000000 0] 

The parameters in the and matrices are dependent on 

the position of the inertial system and the satellite coordi

nates. Thus this problem is non-linear and the Kalman filter 

should not be optimal. Some method had to be used to take 

away the nonlinear aspect of the system. One way would be 

to use the inertial system data and calculate the a, b, c 

parameter for each new estimate. The accuracy of this cor

rection method can be checked very nicely by using the true 

error data obtained from the flight test. It turned out this 

method did not give enough accuracy. 

Recent analytical studies made by Brown have shown that 

if the a, b, c parameters are calculated with a corrected 

position the Kalman filter estimation of the position errors 

are very close to the actual error. In an attempt to cor

rect the position data a smoothing scheme was implemented 

into the system. 

-> V 
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The system will not include the Kalman filter with the 

a, b, c parameters computed with the raw inertial data. Then 

reprocessing all the satellite data recursively with the 

smoothing scheme, better estimates of position are obtained. 

Using these better estimates the a, b, c parameters can be 

remcomputed and the Kalman filter rerun. It was found that 

after two cycles of filtering and then smoothing the esti

mates of the errors were very close to those obtained using the 

true latitude and longitude in the a, b, c parameter computation. 

Figures 4 and 5 indicate the estimation error in lati

tude and longitude channels of the system during the satel

lite pass. The curves were obtained by using the iteration 

technique discussed above. One can see that after two 

iterations the error curves coincide for each channel. 

The subscripts in Figures 4 and 5 indicate the order in 

which the two types of curves were generated. - The order 

of the curves generated by the iterative program is 

Ag, Bg, and Ag. 

Figures 5 and 7 indicate the error curves for a whole 

flight. These graphs indicate the accuracies one may ex

pect from iteration technique previously discussed. 

To implement the smoothing scheme, a subroutine plus 

iteration logic was added to the filtering program used for 

this example. The iterations were made easier because all 

the dynamical data for computing the transition matrices and 

the covariance matrices for the system noise vectors were on 
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tape. Therefore, it was just a matter of rewinding the 

tape to iterate instead of storing all the data in the 

computer. Also, the fact that the measurement equation 

was a scalar made the filtering and smoothing computationally 

easier because the inverses in these algorithms were trivial. 

Figure 8 is a rough flow chart of the computer program used 

in this example. Figure 9 is a flow chart for the program 

used to compute the smoothed estimates. In this subroutine 

the values of z(k,n) are computed starting from the last 

point in the pass to the first point of the pass. And then, 

the smoothed estimates are computed starting at the first 

point of the pass to the last point of the pass. This pro

cedure was outlined when the smoothing equations were de

veloped. 

The block diagram of Figure 10 summarizes the nev/ 

system. 
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VIII. CONCLUSIONS 

When averaging is involved in the measurement process, 

the delayed state automatically appears in the measurement 

model. Therefore, the Kalman filtering equations have been 

developed for the delayed state model. As has been men

tioned before, this type of modeling can be used quite nicely 

for certain aided inertial nagivation systems. 

The importance of the delayed state model suggests that 

there could be a need for more than just the filtering equa

tions. Therefore, in this work the smoothing equations for 

the delayed state model were developed. Realizing that in 

many of the systems being used, the measurement vector is 

smaller in size than the state vector; the smoothing equa

tions were derived to involve inverse operations on matrices 

of the order of the measurement vector. The trade-off being 

that all the measurement matrices must be remembered. 

One of the inherent problems of the smoothing algorithm 

in general could be eliminated by proper use of the smooth

ing equations derived in this work. In most smoothing 

schemes some provision must be made to step the covariance 

matrix backwards in time. Upon carrying this out one must 

invert a matrix of the system size; hence, defeating the 

reason for writing the smoothing equations in the stated 

manner. But, by proper ordering of the computation of the 
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terras in the smoothing equation presented in this work, 

the covariance matrix can be stepped forward in time= The 

method or equations for this are obtained directly from the 

filtering equations. This procedure is illustrated in the 

example in Chapter VII. 

In the process of modeling systems in the Kalman for

mat, extra states could be defined. Friedland (7) has discussed 

a method for decoupling the recursive equations when bias 

states are present in the system equations. He has taken 

the serial computation problem, that presented by the aug

mented state assignment, and decoupled it into two computa

tions in parallel. His method could amount to some savings 

in computation. 

Of course, the advantages of the above decoupling 

Scheme should still be present for the delayed state model

ing. The delayed state occurring in the measurement offered 

a formidable equation obstacle to the mathematical develop

ment of the decoupled equations. By being consistent with 

Friedland's notation, the equations derived for the delayed 

state model look very much like those derived by Friedland. 

The application of the above mentioned decoupling 

sounds rather restrictive. However, it must be remembered 

that slowly varying noise could be thought of as bias states 

ovpr a relativAly short period of time. In the case of the 

smoothing equations, the decoupling aspect remains 
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' I 

restrictive unless one's budget is very limited. This is 

because the general philosophy behind smoothing makes it 

an off-line or after the fact computation. Therefore, there 

ate no time or computer size restrictions on the smoothing 

calculations. This means that one would not want to degrade 

the models of the systems just to take advantage of a compu

tation method. However, changing the conditions under which 

the smoothing computation must be made may yield a more 

favorable attitude toward the remodeling of some systems. 

An interesting side light to the whole idea of smooth

ing has arisen. In the example presented in Chapter VII, the 

smoothing equations were used to help solve a nonlinear prob

lem. The idea of using smoothing algorithms to help solve 

nonlinear problems needs much more investigation, but has been 

demonstrated to work in the example presented. After two 

smoothing and filter iterations it was found that the solution 

was as "good" as could be obtained by using the already known 

true error to get rid of the nonlinear aspect of the problem. 

The speed at which the iteration method converged is due to 

"goodness" of the initial system model. The position errors 

were relatively small as compared to the vehicle's actual 

position on the earth. Therefore, like the second order 

steepest descent method (12), convergence occurs only if the 

inj-tial âppiroxj.rûâtxOu à.Ê> Suj.jLj.cj.6xitly close to the solution. 
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XI. APPENDIX A 

Consider the covariance equation 

P(k+l/k) = F^[I -W(k)L^]P(k/k-l)F^ 

- F^W(k)J^P(k-l/k-l)F^_'j^Fj^+ GQ^G' 

and 

P(k+lA) = F^[I - W(k)L^]P(kA-l)F^' 

- F3^W(k)J^P(k-lA-l)F^_lFj^+GQ^G' 

where, from the derivation in Chapter III, 

= P(kA-l) -P(kA-l) = U(k)M(k)U' (k) 

^k+1 ̂  P(k+lA) -P(k+lA) = U(k+l)M(k+l)U'(k+1) 

Note that the x subscript has been omitted for convenience, 

therefore, 

^k+1 ̂  F%[P(k/k-l) -P(kA-l)]F^-F^[W(k)L^P(kA-l) 

- W(k)Lj^P(kA-l) ]F^ - F^[W (k) J^P (k-1 A-1 ) 

- W(k)j^P(k-lA-l)F^_£]F^ 

= F%[&k_W(k) IkA-D+W(k)%:];GO^G' 

+ WOc) [I^+J^F^;;J]P(kA-l)-W(X) Jj^Fj^"^GQ^G' ]FJ^ 

where 
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W(k) = P(XA-1)[L^+ (F,^_i)-lj^]D-l-GQ^G' 

w(k) = P(kA-i)[î + <Vi'"'̂ k®k̂  

^k = ^k + %:l 

p(kA-i) = p(kA-i) + 

Making substitutions, becomes 

^k+l " Wk\s,.^-

+ Vk°kVk-i'^sOkS'- p(kA-i)E^D;;iE^s^ 

+ GQk°' 'VI''Vk\®k+ P(kA-l)%[%l - D 

. E^P(kA-l) -P(kA-l)Ej^[D"^ -D~^]J^F^3^GQ^ 

+ Q°k°' <^k-i''kt°k^ - D];^]vk:i°v K 

Now, if it is assumed that 

U(k+1) = F^[I-W(k)Ej^]U(k) 

and 

M(k+1) = M(k) -M(k)U(k)'Ej^D~^Ej^U(k)M(k) 

then 
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^k+1 U(k+l)M(k+l)U(k+l) = Fjd - W(k)E^) [S^ _ 

. (I - w(k)E^j'] 

= fkiSk - Wk\Sj^+ g(k/k_l)E^[B-\s^E^D;^ -

+ Sk^k D-1 - 5-1 ]y (kA-1 ) 

r 

+ S,^Ei^[D-l-D-\s^E^D-l]j^F^:lGQ^G' 

+ 5(kA-i)E'[^iE^s,^E^5-i -S,;\S,^E^D-\S,^F^5-1] 

. E^P(kA-l) + P(k/k_l)E^[Ë^\s^Ej;D-lE^S^E^5;l 

- 5k^VkEi\^]Vk-ï's°k°' 

+ OOk°''^k-l'~^Jkt°k^®kSkEkI^k\Sk^K^ 

- Si^^W^kÔ-^lE^PfkA-l) + GO^G- (Fk_i ''^':k[4;\Sk%D;^ 

Since the two equations for are equal, their dif

ference must be zero 

\+i-=k+i = fki®k^[\^-Sk' + '^k\\®k°k^lV<'^^-i> 
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+ g(kA-l)E'[D-l-D-l + D-\s,^Ej^D-ljE^S^ 

- Vk 

+ P(kA-l)Ei^[D-l-D-l + 5-\s^E^D-l 

- "k^Wk^k^Wk^k^lV"^-^-!' -P(kA-l)E^[D-l 

- +°k^ Vk^k°k^ - 5k\\^k\^ Vk^k°k^^Vk:i°° 

- ™kG' '^k-l''k[°k^ -°k^ + ̂ k^®k^k^k5-i 

- Si^X^k^k^^WTcSk^JVlk/k-l) 

+ °°kO' 

- ôi;^^k®k®k°k^w^k°^\]\vî=Ok<='ï^k 

= 0 

To show that the above equation is true, it must be shown 

that 

+ D;\s^E^D^l = 0 

Ëk^ Vk^k^^ = 0 

f-f+°rvk%°k'-5^\w;\w;; '  = « 
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The following identity is needed to show the above equations: 

Dj^ = I^P(kA-l)l^+I^[P(kA-l) -GQjjG 

+ JkfkZltP'k/k-l)-GOkG']lFk-l'"^Jk + 

The second equation reduces as follows 

- 5;^+%^Vk%' = °k' %%°k'' 

= 0 

The first equation reduces as follows 

— 1 —l»v m#-.l _ 
= V^k % = 0 • 

The last equation reduces as follows 
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7 \ ~\ Vk^k^k °k ̂ k^k^k^k ^k^k^k^k 

'Gk' - Dk')EkSkE{:B;^-D^E^S)^E^D-:E^S^E^D-l 

[%' - - Vk=k%^ ]'^^k%5k^ = 0 -

Thus the assumptions made earlier are correct-. Therefore, 

U(k+1) - F^[I - W(k)E^]U(k) 

M(k+1) = M(k) - M(k)U'(k)E^D^^E^U(k)M(k) . 
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XII. APPENDIX B 

Considering the gain component for the state vector x 

Wx(k) = [Px()c/k-l)H^+ Px^(kA-l)c^ +A^_;^Pj^(k-lA-l)N^ 

+ Bk_lPxb'k-l/k-l)Nk]D;^ 

= i[P^(kA-l) + u^(k)M(k )u^(k)  ]H^+ U^(k)M(k)C^ 

+ \_iP^(k-lA-l)N^ + A^_^V^(k-l)M(k)V^(k-l)N^ 

= iP^(kA-l)Hj;.+ A^_^P^(k- lA-l)N^+ U^(k)M(k )  [U^(k)H^ 

+ (Ak_iVx(k-l) + B%_i)M(k)v;(k_l|N^;D;l 

= W^(k)D^D~^ + U^(k)M(k)T'(k)D~^ 

Using the identity proved in Appendix A and the equa

tions for and T(k), the following reduction can be made. 

°k = Wk = \ + \U(k)M(k)U' (k)E^ 

where 

E^U(k) = (L^+J,^F^:l)U(k) 
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0 

u^(k) 

[«k+\ \-l 
-1 

wli \-i] 

u^(W 

E^U(k)M(k)U' (k)E^ = (Hk + MkA%_i)Ux(k)M(k)U^Xk)(H%+N%A%_i)' 

-1 
+ (Ck-KkAk:lBk_l)M(k)(Ct-N%Ak_iB%_i)' 

-1 = [%(k) + N^A^-(U^(k) _ B^_^) + C^]M(k) 

-1 
[%(k) 4.N^A^-(U^(k) -B^_i) + C^]' 

= T(k)M(k)T' (k) 

Therefore, 

Dj^ = Dj^ + T(k)M(k)T' (k) 

Using the inverse lemma presented by Sorenson (21) take the 

inverse of D, 

V = D--D--(Tk)[T'(k)D-"T(k) +M-^(k)]-"T(k)'D-^ 
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Using the inverse lemma again on the bracketed quantity 

[T'(k)D^^T(k) +M~^(k)]"^ = M(k) -M(k)T' (k) [T(k)M(k)T'(k) 

+ D^]"^T(k)M(k) 

= M(k) - M(k)T'(k)D~^T(k)M(k) 

and 

-D~^T(k) [M(k) -M(k)T' (k)Dj^^T(k)M(k)][T' (k)D~^ 

= -D^^T(k)M(k)T' (k)D~^ 

+ Dj^^T(k)M(k)T' (k)D~^T(k)M(k)T' (k)^^ 

Using these results in the gain equations, it follows that 

W^(k) = W (k) - W^(k)T(k)M(k)T'(k)D"^ 
X X X  K  

+ W^(k)T(k)M(k)T' (k)D^^T(k)M(k)T' (k)D^l 

+ U^(k)M(k)T' (k)D-l -V^(k)M(k)T' (k)Dj^^ 

+ V^(k)M(k)T' (k)D~^ 

= w^(k) -W^(k)T(k)M(k)T' (k)Dr^ 

+ W^(k)T(k)M(k)T' (k)Dj^^[l + T(k)M(k)T' (k)Dj^^] 



www.manaraa.com

103 

+ V^(k)W^(k) 

= W^(k) + V^(k)Wj^(k) - W^(k)T(k)M(k)T'(k)D^l 

+ W^(k)T(k)M(k)T' (k)D~^[Dj^+ T(k)M(k)T' (k) ]D~^ 

= W^(k) + V^(k)Wj^(k) - W^(k)T{k)M(k)T' (k)D-l 

+ W^(k)T(k)M(k)T' (k)D~^Dj^D~^ 

= W^(k) + V^(k)W^(k) 
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XIII. APPENDIX C 

In order to write z^(k/n) as a function of z^(k,n) a 

look will be taken at z^(n-l/n), z^(n-2/n) and z^(n-3/n) in 

an attempt to get at the general expression, z^(k,n). 

For k = n-1, the augmented z(n-l,n) will be written as 

two equations- If 

z(n-l,n) = + J^)'D~^y(n/n-l) 

then 

- C^)b(n-l/n-l)] 

Zj,(n-l,n) = (H^A„_^+N^)5(n-l/n-l) 

- C^)b(n-l/n-l) ] 

Using the identity for z^(n-l,n) and the equality that gives 

as a function of it may be shown that 

Zx(n-l,n) = Zx(n-l,n) - + N^)'D~^T(n)b(n/n) 

Proceeding in the same manner and using the equation 

z(n-2,n) = d(n-2,n)z(n-l,n) + (L ,A„+J , )'D^~^y{n-l/n-2) 
il—X n n—± n—X 

it was found that 
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Zx(n-2,n) ̂  ï^(n-2,n) - + Vl'' 

. b(n-l/n) - d(n-2,n) (HA , + N ) 'D~^T(n) 
n n-i n n 

. b(n/n) 

and proceeding on it was found also that 

z (n—3;n) = z (n— 3,n) — d(n— 3,n—1 )d(n—2/n) (H A + N ) 
X X  n  n — X  n  

. D;:^T(n)b(n/n) - d(n-3,n-l) (H„ ,A„ .+ N ,)' 
n n—X n— z n—x 

• B„:];T(n-l)b(n-l/n) - + N^.j) ' 

. D^~2'^(n-2)b(n-2/n) 

The above equations imply that 

• n 
z^(k-!i,n) = z (k+l,n) - Z 3(k+1,n) (H. A. ^ + N. )'D. T(i)b(j/n) 
^ ^ i=k+2 1 ^ ^ 

Using this fact and that 

z(k,n) = d(k,k+2)z(k+l,n) + 'D^~]^y(k+l/k) 

it was found that 

n 
2 (k,n) = 2 (k,n) - X d(k,n)(H. A. ,+N. )'d7 T(i)b(i/n) 
X X i=k+i ^ 1 1 

thus completing the induction proof. Using the identities 

of Chapter IV for reducing the fixed interval smoothing 
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equations to a more desirable state, the above equation is 

reduced to 

z^(k,n) = Zj^{k,n) - N )̂'i5̂ ~]^T(k+l)b(k+l/n) 

n 
- d(k,k+2) E d(k+l,i) (H.A. , + N. )'D7-^T(i)b(i/n) 

i=k+2 1 1 1 

z^(k, n) - e(k+l, n) 

where 

n ^ 
e(k+l,n) = Z d(k,i)(H.A. , + N. )'D. T(i)b{i/n) 

i=k+l 1 1 1 

'«k+l\+ \^^)'£k+iT(k+l)Ê(k+l/n) 

+ d(k,k+2)e(k+2,n) 
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